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Abstract

Recently Miller and Sorer have presented a new nonparametric method for estimating the failure

rate of a software program. The method is based on the complete monotonicity property of the failure

rate function, and uses a regression approach to obtain estimates of the current software failure rate.

This paper extends this completely monotone software model and demonstrates how it can also provide

long-range predictions of future reliability growth. Preliminary testing indicates that the method is

competitive with parametric approaches, while being more robust.

1 Introduction

Suppose a program is executed for a length of time T. During this time, n bugs are detected and removed

when they manifest themselves as failures. The successive failures occur at times

(1)

When bugs are corrected without introducing new faults, the program evolves into a more reliable program,

hence the term "reliability growth". Given the past software data (1) we would like to make various statistical

inferences concerning the current and future reliability of the software. In particular we are interested in the

number of failures expected over some future horizon, the present failure rate, and the future failure rate

after an additional specified time of debugging.

Over the years, many competing models for software reliability growth have been developed. These models

include those by Duane(1964), Jelinski and Moranda(1972), Goel and Okumoto(1979), Littlewood(1981)

and Musa and Okumoto(1984). These are all parametric models. It is interesting to note that all the

above models have a common property: complete monotonlcity of the failure rate function. Let N(_) be

the (random) number of failures observed in [0, t], and let M(t) -- E(N(t)) be the expected number of

failures. M(t) is known as the mean function. The intensity function of the point process {N(t), 0 <_ t} is

r(t) = dM(t)/dt, 0 < t. The function r(t) is also referred to as the failure rate of the process. A function r(.)

is completely monotone if and only if it has derivatives of all orders, and they alternate in sign as follows:

(-i)_a_._(0> o,_> o,q= o,1,2,.... (2)
d_q - -

Miller(1986) has shown that virtually all completely monotone functions can occur as intensity functions of

reliability growth point processes. Thus, a general approach to software reliability growth modelling should

include the entire'class of completely monotone intenisitles.

Miller and Sorer(1985) have previously introduced a nonparametric model for software reliability growth

which is based on complete monotonicity of the failure rate function. The method uses a regression approach

*Supported by National Aeronautics and Space Administration Grant NAG-l-771.
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to obtain estimatesofthe currentsoftwarefailurerate.Millerand Sofer(1986a)show that thismethod often

givesestimates which have a lower bias than those ofcertain(widely-used)nonparametric methods; using

Monte Carlo simulated failuredata,these "completelymonotone regression"estimatesofcurrentfailurerate

are alsoshown to be more robust than the estimatesbased on parametricmodels. Chan(1986) has estimated

the distributionof time untilnext failurefor realdata using completely monotone regressionestimatesof

currentreliability:he startswith a raw estimate which isan exponential distributionwith the estimated

currentfailurerate and then "adapts" itto a more generaldistributionusing the procedure of Littlewood

and Keiller(1984).Chan then evaluatesthese estimatesusing criteriaof Abdel-Ghaly, Chan and Littlewood

(1986).This study shows that the completely monotone regressionapproach givesgood estimateswhich are

more robust than estimatesfrom parametric models.

This paper extends the completely monotone softwaremodel by developing a method forprovidinglong-

range predictionsoffuturereliabilitygrowth, based on the model. The paper derivesupper and lower bounds

on extrapolationsofthe failurerate functionand the mean function intothe future.These are then utilized

to obtain estimatesfor the futuresoftwarefailurerate and the expected futurenumber offailures.

2 Problem Formulation

Consider the failuredata as in (I). Our goal isto find a completely monotone rate function and/or the

associatedmean function which best fitsthe data• (We note here that the mean function does not strictly

satisfy the complete monotoniclty property; rather, M(t) is a nonegative function whose derivative dM(t)/dt

is a completely monotone function). Our approach will be to obtain an initial raw estimate for the required

function from the data, and then to smooth it by fitting a completely monotonic function which is closest

to it in the least squares sense.

A natural raw estimateJt¢(t) for the mean function is a piecewise linear function with breakpoints at
ti, i -- 1,..., n, such that M(ti) = i. Analytically, this function is given by

lt/I(t)= { i+(t-t,)/(ti+l-ti) ti <_t <_ti+l; i=O,...,n-1n + $(t- t,,)/(T- t.) t. < t < T. (3)

The second term in the finalintervalreflectsthe absence ofa failurein the period (t,,T]. The choiceof6

issomewhat arbitrary,with higher valuestending tending togive more conservativeestimates.In thiswork

we consider valuesof 0.0,0.5 and 1.0for6,however one can argue forand againstany particularvalue.

In practice,itisnecessary to discretizethe problem of findinga completely monotone function to the

mathematically more tractableproblem of findinga finiteset of points along that function. The most

plausible and straightforward approach is to consider discrete time points which are equally spaced. We

thus divide the time interval [0, T] to k intervals of equal length 0 - T/k, and define si -- iO , i = 0,..., k.
Thus the sequence rhi = M(s,) will be an initial estimator for the values of the mean function at the fixed

intervals si. In general, however, this sequence will not satisfy the complete monotonicity assumptions of

the model, and will thus need some modification.

For the problem of estimating the rate function, one obtains an initial estimator from the slope of the

mean function estimator M(t). Specifically, the sequence

_i = (r_ - rb__,)/0; i = 1,..., k

will constitute a raw estimate of the fail-ure rate function at the points s,.

When working with discrete, equally spaced time points, the analogue of a completely monotone function

is a completely monotone sequence. The sequence (n, i = 1, 2,...) is completely monotone if

(-1)JAJr, >_ 0, j + 1 < i; j = 0, 1,... (4)

where &J is the j-th order backward difference operator

AOri = ri, Alri = ri -- ri-1, AJri = AJ-lri -- AY-lri-1, j > 1 (5)

In general, the initial estimate (rl,..-, _t) will not have the complete monotonlcity property. Our goal will

be to find the "closest" completely monotone sequence (r,,..., rk), and use it as an estimate of the sequence
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of failureratesat times si. Using the criterionof weighted leastsquares,the problem isto finda vector r

which minimizes
k

D(,, = - (8)
i----I

subjectto the complete monotonicity constraintsof (4),where wi isa set of prespecifiedweights.

In practice,numerical experienceindicatesthat the effectofthe very high order differenceconstraintson

the optimal solutionisat most marginal;moreover, theirpresenceleadstoill-conditioningofthe optimization

problem. Consequently we relaxthe constraintsin (4) and considerdifferencesof at most d (not co),with

d being typically3 or 4. Similarly,itisunnecessary to constrainthe sequence infinitelyfarinto the future;

we shallrestrictthe number offutureintervalstol,ratherthan c_. Finally,itshould be noted that many of

the constraintsin (4) are redundant, e.g.,Ari_l __ 0 and A2r_ __0 imply that At, __O. Eliminating those

redundant constraints,we finallyobtain the reduced system ofequations

(--1)dAdri _> O, d + 1 < i < k + l
(--1)YAYrk+t_0, 0_j_d-1, (7)

and our problem is to minimize (8) subject to (7).

Notice that for the case d : 1, the problem is the well known "isotone regression" problem described

by Barlow et al. (1972) and addressed in the reliability growth context by Campbell and Ott (1979), and
Nagel et al. (1984). If the last interfailure happens to come from the right tail of the interfailure time

distribution, _ will underestimate r(T), and the monotone constraint on r will have no effect, thereby

leading to a negative bias. Imposing the additional constraint of convexity tends to pull this estimate
up. In most software reliability applications, a positively biased estimate of the failure rate is safer than

a negatively biased estimate; thus, higher order constraints seem to be desirable, and the generalisation of

isotone regression to completely monotone regression an improvement.

Let us return to the problem of estimating the mean function. Recalling that its first order derivative is

a completely monotone function, and using the above, our problem is

k

min

subjectto

i=I

(-1)d+lAem_ >_ O, d < i < k +l (8)

(-1)JaJra_+_ _>O, 0 < j _<d- 1
rrtk = n+_,

where mo isdefinedas zero. Iftestingstopped at a failure,(i.e.,tn = T), the value II= 0 should be used.

In the case of truncated testinghowever, the value 6 = 0.5 isa more plausiblechoice.Using an argument

based on the assumption of a Poisson Process,a value_i-- i isalsoa plausiblechoice.

The optimization problems presented above are linearlyconstrainedquadratic programming problems,

and algorithmsfor theirsolutionare readilyavailablein the literature.However, itcan be shown (seeMiller

and Sofer(1986b)) that our particularproblem of least squares regressionunder higher order difference

constraintsbecomes increasinglyill-conditionedas the problem size grows. Thus, a numerically stable

algorithm should be employed for itssolution.For a detaileddescriptionof a viablesolutionapproach, see

Millerand Sorer(1986b).

An additionaldifficultywhich arises,when attempting to include monotonicity requirements into the

future,isthat the Hessian matrix,i.e.,the matrix ofthe second order derivativesofthe objectivefunction is

singular,since the futurepredictionsriand mi ( where i= k + 1,...,k + I)do not appear in the objective.

Moreover, the optimal futurerateor mean estimatorsobtained by the leastsquaresobjectiveare not unique.

In section3,we show how to overcome the problem ofsingularity,by reformulatingthe constraintson the

future rates (or mean function estimates)in terms of those of the past. Surprisingly,thisapproach also

provides bounds - lower and upper envelopes forthese futureestimates.
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3 Predictions into the Future

As mentioned previously, formulation (8) gives rise to some computational problems, when future pre-

dictions are requested, i.e., when I > 0. Algorithms for solving quadratic programming problems (see

McCormick(1983)) usually require that the Hessian matrix of the objecitve function be positive-definite.
However, the Hessian matrix of the objective for (6), ( i.e., diag (wt,..., wk)) is only positive semi-definite,

and does in fact have singularities. As a result, not only will we encounter numerical difficulties when trying

to solve the problem directly, but the optimal solution will not be unique. Indeed, any two solution vectors

where the first k components are equal, will yield exactly the same objective value. In other words, if the

completely monotone sequence (rt,..., rk) can be extrapolated 1 time intervals into the future, in a way that

the resulting sequence (rl,..., rt+l) is completely monotone, then all such possible extrapolations will have
the same least squares objective. In the following we show, that among all such extrapolations, there exist

a globally highest and a globally lowest extrapolation, and all other completely monotone extrapolations
into the future must lie in between the highest and lowest bounds. We thus have an envelope in which all

completely monotone extrapolations are restricted. In addition, we derive the conditions under which the

sequence (rt, ..., rh) can be extrapolated as a completely monotone sequence into the future.
Consider the completely monotone sequence of order d: R = (rl,..., rk). The sequence (rt+l,..., rt+l)

is defined to be a feasible completely monotone extrapolation of order d for R, if the sequence (r 1,. •., rk+i) is

completely monotone up to order d, i.e., it satisfies (7). In addition, this extrapolation constitutes an upper

bound for all feasible extrapolations of order d, if any other such extrapolation, (ek+t,-.., et+#) satisfies

ek+i < rk+i for i = 1,...,/. Similarly it constitutes a lower envelope ifek+, > rh+i for all i. In the following,
we derive conditions for the existence for such higher and lower envelopes for the completely monotone

extrapolations.
For the case d = 1 and d = 2, the sequence (rl,..., r_) can be extrapolated into the future by letting

rt+_ = rt, i = 1,...,1. This extrapolation is clearly the upper envelope for all completely monotone

extrapolations of order 1 and 2, and is always feasible. Also for d = 1, the extrapolation rk+i - 0 is clearly a
lower envelope for all isotone extrapolations. The next proposition shows, that the lower envelope for feasible

extrapolations of order d = 2 is along a piecewise linear function which has slope Atrk, until it reaches zero,
after which it continues as a constant function zero. We define

{ [--rk/Alrt]) ifAirk>O (9)P = l if Alrk = 0

where [n] is the greatest integer not larger than n.

Proposition 1 Consider the constraints (7) with d = 2 and fized 1 > O, and let (ri,..., r_) be a feasible

solution to (7) with l = O. Then the eztrapolation

{ rl: + iAlrk i= 1,...,p (10)rk+i= 0 i=p+l,...,l

is a lower envelope for all feasible eztrapolations of order _ to (rl,...,rl:) .

Proof: The solution above is clearly monotone, and A2rk+, = 0 for i = 1,...,p and i = p + 3,...,l. In

addition, A2r_+p+l = -(rk + (p + 1)Alrk) and A2rk+p+2 = rk + pAlr_, which, by definition of p are both
nonnegative. Thus the constraints of (7) for d = 2 are satisfied. Note also, that for any other feasible

extrapolation (ek+l,..., ek+l) we have

htfk+j _> htr_.

Thus, if i < p then
i

_+i = r_ + E Aifk+J > rk + iAirt = rk+i.
j=l

It follows that (10) is a lower envelope as proposed.
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Proposition 2 Consider the constraints (7) with d : 3 and fired I > O. A solution (rl,...,r_) which

satisfies (7) witit I = 0 can be eztrapolated to a vector (rl,..., r_+t) which satisfies (7) with I > 0 if and onhj

if
1

rk + jAlrk + _j(j + 1)A2rk > O; j = 1,..., I. (11)

In addition, let

{ [-Alr_/Aart] ifA2rt >0q = l if A2rt = 0

Then the upper envelope of all feasible extrapolations for d = 3 is given by

rt+iAlrk+_i(i+l)Aart i--- 1,...,qrk+i -:
rk+q i=q+ 1,...,l.

Proof: First we note, that any feasible extrapolation satisfies

rk+i

i

---- rk + E AXrk+_-
j:l

i j

j=i h=l

j

j=l h=l

<_ r_ + iAlrk + _i(i + 1)A2rk

and the nonnegativityof rt+, impliesthat (11) must hold. Conversely,assume that (11) holds. Now since

{r,} iscompletely monotone of order 3, the sequence {-A_ri} iscompletely monotone with order d = 2.

Using Proposition I forthe lowestfeasibleconvex extrapolationfor {-A1ri}, we obtain the upper envelope

forcompletely monotone extrapolationsof(rl,...,rk) oforder 3.

Proposition 3 Consider the constraints(7} with d = 3 and firedI> O, and let(rx,...,rk) be a solutionto

(7) with l = 0 satisfying (11). Let p be defined as in (9).

(a). rf p >_ l, then the eztrapolation

rk+ _ :rk ÷ iAlrk, i: 1,...,p

is a lower envelope for all feasible eztrapolations of order 3 to (rx,..., rk).

(b). If p <_ l, let
= mini/, 1 + [-2r_/Alrk]).

Titan the eztrapolation

_(_+1) ./ i-: 1,...,u (12)
rk+i: 0 i:u+l,...,l

is a lower envelope for all feasible eztrapolations of order 3 to (rl,..., r_) .

The proposition states that the lowest envelope is a linear function with slope Alrk, provided that such

a linear function is feasible (nonnegative); otherwise it starts as a quadratic function with constant second
order difference

(2(r_ ÷ uAlr_))a = - u(u + 1)

which flattens to zero at r_+u, and from there continues as zero.
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Proof: If p _> l then (10) is a feasible extrapolation of order 3, thus (a) follows from Proposition 1.

Ifp _< I then (10) will not satisfy the third order difference constraints. We now show that for this case, the

function of (12) is indeed a lower envelope for any feasible extrapolation. First assume that there exists a
feasible extrapolation _k+t... _+z for which A2fk+l < a. Then

Pk -_- _ilrk -- (r k -I- 'j,Alrk) = 0,

incontradictionto the conditionsgivenby Proposition2,fora feasibleextrapolationfor r1,...,rk,fk+1. We

thereforeconclude that any feasibleextrapolationhas a second order differenceofat leasta. If,on the other

hand, _)fk+1 > a, then fk+1 > rk+l. An inductiveargument startingfrom rk+1 completes the proof.

Proposition 4 Consider the constraints (7) with d = 4 and fized I > O. A solution (rt,...,rk) which

satisfies (7} with l = 0 can be eztrapolated to a vector (r1, . . ., r_+t) which satisfies (7) with I > 0 if and only

ff
i

A1rk+jA2r_+_j(j+l)h3r_ <_0, j= 1,...,1 (13)

+ Inlr +  l(l + 1)n2r > 0, (14)

2 I
r_+5(j--1)Alr_-I--_j(j-- 1)A2r_>_0, j= 1,...,l. (15)

If Alr_ + IA2rk < 0 _hen _he upper envelope of all such eztrapolations is given by

1.. 1)A_r_, i i, ,p. (16)
r_+i -- r_ + iA1r_ + _t(z + = ...

Otherwise, let
v = mint/, 1 + [--2Alrk/A_rk] ).

Then the upper envelope of all such eztrapolations is given by

= + + ½iCi+ 1)n r +  i(i + i)(i + 2) : ...,
r_+_ i = v + 1,...,1.

Proof: If the sequence {r_+_} is a feasible extrapolation of order d = 4 then the sequence {-Alr_+i} is
a feasible extrapolation of order d = 3. By Proposition 2, the conditions for existence of the latter are given

by (13). In addition, the upper envelope of all extrapolations for d = 4 is the sequence {rk+i} for which

{--Atr_+i} constitutes the lower envelope of all extrapolations of order d = 3. Applying Proposition 3 with
respect to the sequence {--Alrk+i} and integrating over this lower envelope yields the sequence of (16) and

(17). Note that by construction, the resulting sequence is nonincreasing, convex with nonpositive third order

difference. It remains to determine the conditions under which this sequence is nonnegative. First, we note

that condition (14) guarantees that (16) will be nonnegative. From Proposition 2 this is also a necessary

condition. Also conditions (15) guarantee that r_+_ is nonnegative for any possible value of v between 1 and

I.Since (17)representsa decreasingfunctionwhich becomes constant fori _>v,thisguarantees that r_+, is

alsononnegative for any i.To show that conditions(15) are alsonecessary,define

It is easy to see that P(j) decreases for j = 1,...,v and increases for j = v,...,l. Suppose that (15) is
violated for some j. Let ] be the smallest index to violate this condition. It follows that j < v and that

P(v) <_ O. This in turns implies that rt+_ < 0, and thus no feasible extrapolation with d = 4 is feasible,

hence a contradiction. This completes the proof.

We shall now derive the envelopes for prediction for the mean function. Consider a sequence of order d:

M = (m_,..., mr) which satisfies (8). The sequence (m_+_,..., m_:+t) is defined to be a feasible extrapola-

tion of order d for M, if the sequence (m_,..., rn_ +_) satisfies (8). In addition, this extrapolation constitutes



an upper bound for allfeasibleextrapolationsof order d, ifany other such extrapolation(rh,+1,...,At+i)

satisfiesrht+_ < rn,+ifori- i,...,I.Similarlyitconstitutesa lowerenvelope ifrh_+i >_rnk+_fori- I...,I.

In the following,we deriveconditionsfor the existenceforsuch higherand lower envelopesforthe feasible

extrapolationsforM. We note that the derivativeof the mean functionisa completely monotone function.

Therefore,the lower and upper bounds forallfeasibleextrapolationsof order d to rnl,...,rnt are obtained

by integratingrespectivelyover the lower and upper bounds for allfeasibleextrapolationsof order d - i to

AWl, l, . .., AT"O, k.

Consequently, forthe case d = I,d = 2 and d = 3,the sequence (ml,..., rnk)can always be extrapolated

intothe future.The upper envelope for allfeasibleextrapolationsoforder up to 3 isthe linearfunction

Yrl'k+_ : YY_,k -]- iAlrrJ'k •

For d : 1 and d = 2 the extrapolationrnk+_--rnk isclearlya lower envelope for allfeasibleextrapolations.

The next propositionshows, that the lower envelope for feasibleextrapolationsof order d = 3 isalong a

quadratic which tapersoffto a constant function.

Proposition 5 Consider the constraints(8) with d = 3 and f_ed I > O, and let(rt,...,r_)be a feasible

solution to (8) with I = O. Let

( [--Alm_/A_mk] ifA2mk >0 (18)P = I if A2m_ : 0

Then the eztrapolation

rfl'k+l = W't,k + p i=p+l,...,i

is a lower envelope for all feasible eztrapolations of order 3 to (rnt,..., rrtk) .

Proof: Follows from Proposition i.

Proposition 6 Consider the constraints (8) with d : 4 and fized I > O. A solution (rnl,...,r_tc) which

satisfies (8) with 1 = 0 can be eztrapolated to a vector (mr,..., rnk+l) which satisfies (8} with 1 > 0 if and

only1 if
1

AXrrt_+jA2rnk+_j(j+l)A3mk >0, j= 1,...,1. (19)

Let

and let

( [--A3rnk/A3rnk] if A3rnh > 0q= I if Aarnk =0

a : Atrnk + qA2rnk + _q(q + 1)A3rntc

Then the upper envelope of all such ez_rapolations is #iven by

rnk+i : rnk+e + (i-q)c_ i = q + l,...,l.

Proof: Follows from proposition 2.

Proposition 7 Consider the constraints (8) with d = 4 and fized I > O, and let (rn_,..., rnt) be a solution

to (8) with l = 0 satisfying (19}. Let p be defined as in (i8).

(a). If p > 1, then the eztrapolation

rnt+i=rnt +iAlm_ + _i(i+ l)A2rnt, i= 1,...,p

is a lower envelope for all feasible eztrapolations of order _ to (rrq,...,mh ).

(b}. lf p < i, let
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Then the ez_rapolation

\ _(_+i) ), i=l,...,u
7q_k+ ( =

rn_+u i = u + 1,...,i

is a lower envelope for all feasible eztrapolations of order _ to (ml,...,rrt_) .

The propositionstates_hat the lowestenvelope iseitheralong a quadraticfunction,or itstartsasa cubic

function which tapersofftoa constant function.Itsproof followsfrom Proposition 3.

4 Monte Carlo Study of Performance

To get an idea ofhow wellfuturepredictionenvelopes estimatefuturebehavior,we conducted a small Monte

Carlo simulation experiment. Our goal isto estimate the number of events over some finitehorizon. As

in Millerand Sorer (1986a), we compare the completely monotone approach to some of the more popular

parametric models. A value ofd = 4 isused for the completely monotone estimation(_ istaken as 1).Thus

the leastsquares problem (8) issolvedford = 4,with the constraintsof (19) replacingthe constraintsof(8)

fori = k + i,...,k + t.Propositions6 and 7 are appliedto the resultingsolutionto obtain the upper and

lower envelopes for the futuremean function.Finally,we need a point estimate of the expected number of

failures.We have arbitrarilydecided to use the midpoint ofthe envelope.

Our choiceofparameter models consistsofthreefamiliesofnonhomogeneous Poisson processes(NHPP).

The mean functionsofthe NHPP's may have exponential,power or logarithmicform:

M._v(t) = ")'(1- e-'_),
M,o (O =
Mtoa(t) -- 7 log(_t+ 1).

Those models are fit to data by using the method of maximum likelihood as described by Muss and Oku-
moto(1984). Furthermore, we define a fourth model which is a mixture of the above three. It is fit by

selecting the best fitting (i.e., maximum likelihood) of the three models. This is the "best" parametric

model, among the three possibilities.

We draw our data from 16 differentPoisson processes.Each process is observed over the interval[0,I00]

and the future intervalis [100,125],i.e.,25% into the future. We used k = 20 and I = 5. The 16 cases

providea varietyofdifferentgrowth patterns.Each case isreplicated400 times.The cases are summarised
inTable I.

The performance of the parametric models and the completely monotone approach are summarized in

Tables 2, 3 and 4. Table 2 shows the average predictionmade by each model for the 400 replicatesof each

case. Table 3 shows the average percentage error,or bias.Table 4 shows the root-mean-square percentage

errorfor the 400 estimatesmade by each model for the 16 testcases. We note that when the data comes

from a certainmodel, then that particularmodel gives the best predictions.However in most cases,the

completely monotone comes in as "second best",i.e.,itgives betterpredictionsthan those given by using

the incorrectparametric model. In practice,ofcourse,itishighly unlikelythat a parametric model used

for predictionwillindeed be the "correct"model from which the failuredata was generated. In Table 5 the

performance of the predictionenvelopes issummarized. Note that the majority of the envelopes have zero

width, i.e.,the upper envelope isidenticalto the lower envelope.

In conclusion,we stressthat some components inthe formulationofthe completely monotone model were

chosen arbitrarily.Other definitionsof the raw estimates and other objectivefunctionswillgive different,

and possibly better estimates. Nevertheless,the completely monotone approach shows a robustness not

exhibited by the individualparametric models. The procedure has quite low bias,which islessthan that

caused by using the incorrectparametric models forprediction.Comparisons tothe "best"parametric model

are unfairbecause the Monte Carlo data is,in effect,drawn from that model. We could use other models

to generate data for which this "best"parametric model isinferiorto the more robust completely monotone

approach.

8



Model Type of Parameter M(125) -
Number NHPP M(100)

1 Homogeneous 10.00
2 Power a =.749 7.28

3 Power _ =.557 5.29

4 Power a =.410 3.83
5 Power a =.296 2.73

6 Power a =.208 1.90

7 Logarithmic fl =.0124 6.42

8 Logarithmic /3 =.0429 4.43
9 Logarithmic j_ =.131 3.16

10 Logarithmic J_ =.461 2.27

11 Logarithmic _ =2.43 1.62

12 Exponential r/ =.00808 5.88

13 Exponential 77=.0167 3.17

14 Exponential r/ =.0265 1.47

15 Exponential r/ =.0385 0.54

16 Exponential 77=.0550 0.12

Table 1: Data Models (Poisson Processes). All models are scaled so that E(N(100)) = M(100) = 40.

Model True EXP LOG POW BEST CM.
Number Mean Mdpt.

1 10.00 8.67 8.86 9.33 8.73 9.52
2 7.28 5.62 6.11 7.34 6.38 7.72

3 5.29 2.97 3.73 5.36 4.70 5.88

4 3.83 1.36 2.23 3.88 3.62 4.50

5 2.73 0.51 1.31 2.76 2.65 3.40

6 1.90 0.15 0.75 1.92 1.87 2.52

7 6.42 6.10 6.76 8.20 6.48 7.44

8 4.43 3.41 4.68 6.63 4.19 5.38

9 3.16 1.64 3.29 5.27 2.89 4.06

I0 2.27 0.64 2.35 4.11 2.28 3.08

11 1.62 0.18 1.66 3.10 1.71 2.30

12 5.88 5.86 6.57 8.09 6.26 7.31

13 3.17 3.21 4.70 6.72 3.67 4.73
14 1.47 1.51 3.62 5.63 1.91 2.84

15 0.54 0.57 2.95 4.77 0.75 1.60

16 0.12 0.14 2.48 4.07 0.21 0.88

Table 2: Average Predictions of Mean Number over Future Horizon
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Model I Fitted Model

Number I EXP LOG POW BEST CM
1 -13. -11. -7. -13. -5.

2 -23. -16. +1. -12. +6.

3 -44. -30. +1. -11. +11.

4 -65. -42. +i. -6. +17.

5 -81. -52. +i. -3. +24.

6 -92. -61. +I. -2. +33.

7 -5. +5. +28. +I. +16.

8 -23. +5. +50. -6. +21.

9 -48. +4. +67. -8. +29.

i0 -72, +3. +81. O. +36.

Ii -89. +3. +98. +6. +42.

12 O. +12. +32. +6. +24.

13 ÷I. +48. +112. +16. +49.

14 +3. +146. +282. +30. +93.

15 +6. +448. +788. +40. +199.

16 +14. +1921. +3216. +74. +615.

Table 3: % Prediction Error (Bias) for Mean Future Number

Model I Fitted Model

Number ] EXP LOG POW BEST CM
1 26. 24. 29. 24. 29.

2 39. 32. 23. 31. 30.

3 53. 39. 23. 32. 39.

4 69. 46. 23. 29. 48.

5 83. 55. 23. 26. 60.

6 93. 62. 23. 26. 73.

7 37. 32. 39. 36. 38.

8 44. 31. 59. 43. 50.

9 57. 26. 75. 47. 62.

i0 75. 23. 89. 40. 74,

ii 90. 21. 99. 27. 85.

12 38. 34. 47. 37. 45.

13 45. 61. 120. 53. 80.

14 54. 155. 292. 82. 142.

15 67, 461. 805. 134. 278.

16 95. 1956. 3268. 336, 776.

Table 4: % Root Mean Square Error for Mean Future Number Prediction
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Data Fraction Fraction Av.width TrueMeanCoverage

Model Zero Non-zero N0n-zero Fraction Fraction Fraction

Number Width Width Envelope Overestimate Correct Underestimate

1 .715 .285 0.348 .408 .067 .525

2 .515 .485' 0.816 .575 .105 .320

3 .503 .497 0.966 .542 .182 .275

4 .548 .452 0.759 .550 .167 .283

5 .570 .430 0.588 .585 .160 .255
6 .600 .400 0.414 .595 .155 .250

7 .420 .580 1.116 .610 .193 .197

8 .417 .583 1.334 .515 .283 .202

9 .505 .495 0.897 .560 .243 .197

10 .573 .427 0.616 .600 .193 .208

11 .573 .427 0.441 .605 .182 .213

12 .363 .637 1.228 .648 .190 .162

13 .305 .695 1.828 .520 .400 .080
14 .321 .679 1.300 .574 .333 .093

15 .503 .497 0.656 .652 .243 .105

16 .698 .302 0.209 .925 .063 .013

Table 5: Performance of Completely Monotone Prediction Windows
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